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SUMMARY

A �nite volume, time-marching for solving time-dependent viscoelastic �ow in two space dimensions
for Oldroyd-B and Phan Thien–Tanner �uids, is presented. A non-uniform staggered grid system is used.
The conservation and constitutive equations are solved using the �nite volume method with an upwind
scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure
�eld, the semi-implicit method for the pressure linked equation revised method is used. The discretized
equations are solved sequentially, using the tridiagonal matrix algorithm solver with under-relaxation.
In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate.
Simulations of viscoelastic �ows in four-to-one abrupt plane contraction are carried out. We will study
the behaviour at the entrance corner of the four-to-one planar abrupt contraction. Using this solver,
we show convergence up to a Weissenberg number We of 20 for the Oldroyd-B model. No limiting
Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical
results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Polymeric �uids are of particular interest in the numerical simulation community because
of the rich variety of behaviour observed in experiments. Several families of constitutive
equations exist, including integral-type equations and di�erential models [1].
Flows through contractions have been of primary importance. These problems manifest

su�ciently complex �ow phenomena. They provide a challenge to the numerical algorithms.
A major problem a�icting the early numerical techniques was the failure to obtain solu-
tions at Weissenberg numbers much greater than unity. This phenomena is called ‘the high
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Weissenberg number problem’ (see Chapter 11 in References [2; 3]). The cause of the failure
of these numerical simulations is purely numerical: the mixed elliptic–hyperbolic type of the
equations, geometrical singularities (corner of the abrupt contraction). Theoretical work [4; 5]
has made it possible to propose robust and e�cient numerical schemes.
During the last few years, remarkable progress has been achieved in numerical simulations.

Many numerically stable and accurate algorithms for computing some viscoelastic �ows have
been proposed, among these are the 4× 4 mixed element of Crochet and Marchal [6], the
explicitly elliptic momentum equation (EEME) method of King et al. [7] and the elastic–
viscous split stress (EVSS) method of Rajagopalan et al. [8]. Convergence of each method
of the calculations with mesh re�nement was demonstrated. Marchal and Crochet were able
to solve the axisymmetric 4:1 contraction problem for essentially unlimited Deborah num-
bers for an Oldroyd-B �uid. They report solutions for Deborah numbers as high as 64. Rao
and Finlayson [9] applied the EEME to the axisymmetric 4:1 contraction problem and found
that the use of EEME resulted in better solutions than could be obtained by solving the
Cauchy momentum equation when quadratic polynomials are used to approximate the stress
�eld on each element. They also employed an adaptive mesh technique to re�ne the mesh
in regions where the residual was high. The highest Deborah number for which solutions
could be obtained was 3.84. Rao and Finlayson [10] have used the EEME and the incon-
sistent streamline upwind Petrov–Galerkin method in conjunction with �nite element spaces
that are biquadratic velocity, bilinear pressure and bicubic stress �eld on quadrilaterals. The
highest Deborah number for which calculations were successful was 19.2 for a Maxwell �uid
and 42 for an Oldroyd-B �uid. Fortin and Fortin [11] have simulated the �ow through the
four-to-one abrupt plane contraction of an Oldroyd-B �uid by using the streamline upwind
(SU) technique and Lesaint–Raviart method and they obtained solutions at high Weissenberg
number. Fortin and Fortin [12] proposed an iterative method based on the generalized min-
imal residual (GMRES) method, they could obtain solutions for Deborah number as high
as 4.5 for the stick-slip problem. Later Fortin and Zine [13] rede�ned an extra-stress tensor
and improved the range of convergence, the critical Deborah number was increased to 16 for
the same problem but still lower than the limit achieved by Marchal and Crochet [6]. Beris
et al. [14] developed a combined pseudo-spectral=�nite element method to simulate the �ow
of a Maxwell �uid between eccentrically rotating cylinders.
Simulations based on the �nite di�erence method are also used in the computation of

viscoelastic �uid �ow [15–19]. Al Moatassime and Jouron [20] solved the four-to-one abrupt
plane contraction and the stick-slip problems by using the fall approximation storage (FAS)
multigrid method. A critical Weissenberg number was found when the Oldroyd-B model was
used and this number decreases upon mesh re�nement. The highest Weissenberg number for
which calculations were successful was We=10:0 for the stick-slip problem and We=6:0
for the �ow through four-to-one abrupt plane contraction. For the PTT model, calculation is
pursued up to We=15:0 for the four-to-one contraction problem and none limiting value of
Weissenberg has been reached for the stick-slip problem. Al Moatassime and Esselaoui [21]
have proposed a FAS algorithm and a cell by cell relaxation procedure to solve the steady
stick-slip and the �ow through four-to-one abrupt plane contraction problems. For the stick-
slip problem they could obtain solutions for We as high as 14 and the highest We for the
four-to-one abrupt plane contraction problem was 12.
The �nite volume method is gradually been used more within the viscoelastic context (see

References [22–27]).
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An outline of this paper is as follows. In Section 2 we introduce the problem de�nition.
The next section is devoted to the description of the �nite volume method. Then we present
numerical results of �ows in four-to-one abrupt plane contraction that will exhibit some of
the interesting properties of viscoelastic �uids. We draw conclusion in Section 7.

2. BASIC FLOW EQUATIONS

2.1. Governing equations

We shall consider the unsteady, incompressible and isothermal �ow of a viscoelastic �uid.
The equation of continuity and the equation of motion can be reduced into the dimensionless
form as follows:

∇U =0 (1)

Re
@U
@t
+ Re(U ·∇)U =∇� (2)

�=−P:I + 2(1−!r)D+ � (3)

Here P represents the dimensionless pressure; U represents the dimensionless velocity vector; I
is a unit tensor; � and � represent the dimensionless stress and total stress tensor, respectively;
Re=�UtLt=� is the Reynolds number, where � is the density of the �uid; � is the �eld
viscosity; Lt and Ut are a typical length and a typical velocity of the �ow, respectively.
Our choice of constitutive models are those due to Phan Thien–Tanner [28; 29] and Oldroyd-

B. The following equation should exist:(
1 + �

We
!r
Tr(�)

)
�+We

Da�
Dat

=2!rD (4)

The operator Da=Dt is the objective time derivative de�ned by

Da�
Dt

=
(
@
@t
+U ·∇

)
�+ � W − � W − a(D �− � D)

where D is the strain rate tensor D= 1
2(∇U+(∇U )T); W is the vorticity tensor; W = 1

2(∇U−
(∇U )T), the parameter a satis�es −16a61, We= �1U=L is the Weissenberg number (�1 is
relaxation time) and !r =1− �2=�1 (�2 is retardation time).
The Oldroyd-B model is obtained by setting �=0.
For a two-dimensional system, the dimensionless unsteady state problem can be written as

@U
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where U and V are the velocity components, respectively, in the x and y directions;

�=

(
�xx �xy
�xy �yy

)

The system above is solved with appropriate initial conditions U (·; t)=U 0(·); �(·; t)= �0(·);
P(·; t)=P0(·) and boundary conditions.
The problem can be symbolized by

�nd (U;P:�) solution of L(U;P; �)=0 in � (5)

where L is a non-linear operator.

3. NUMERICAL METHOD

All of the governing equations can be written in the form of the general transport equation
as follows:

@
@t
(∧�) + @

@x

(
∧U �− 	 @�

@x

)
+
@
@y

(
∧V �− 	 @�

@y

)
= S� (6)

where � is the primitive working variable, the coe�cients 	 and ∧ have di�erent meanings
for di�erent working variables, and S� represents the source term which includes all the terms
that cannot be accommodated in the convective and di�usion terms and has di�erent context
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Table I. The de�nition of di�erent variables.
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Figure 1. Pressure, velocity and stress tensor in the cell (i; j).

for di�erent equations. For the form of primitive variable, the coe�cients 	 and ∧, and source
term S�, refer to Table I.
We use a non-uniform staggered grid system. In a staggered grid as shown in Figure 1,

pressure P; �xx and �yy are cell centred, whereas the components of the velocity are de�ned
at the middle of the sides. The component �xy of the stress is de�ned at the top of a cell.
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Figure 2. Control volumes for P;U; V; �xx; �yy; �xy.

Figure 3. The control volume for grid point P.

The �ow domain is divided into a set of non-overlapping control volumes V over which
Equation (6) is integrated.
A control volume in two-dimensional space is determined by a quadrilateral surrounding a

grid point (see Figures 2–4)
Using the divergence theorem, integration of Equation (6) over the area of a cell leads to

the equivalent integral relation

∧ d
dt

∫
cell area

� dx dy +
∮
cell faces

(
∧U �− 	 @�

@x

)
dy −

(
∧V �− 	 @�

@y

)
dx

=
∫
cell area

S� dx dy
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Figure 4. Finite volume discretization for �xx.

The (d=dt)
∫
cell area � dx dy term in the above relation represents the change in time of the

state primitive variable � over the cell area and is discretized, using �rst-order Euler implicit
formula as (
V=
t)(�P −�nP).

V is the control volume magnitude, the subscript P refers to the grid point where the

quantity is de�ned, and the subscript n denotes the value evaluated at time-level n and 
t is
a time-step.
The term S� is generally assumed to be a linear function of variable �:

S� = SC + SP�P

where SC is the part of S� that does not explicitly depend on � and SP is the coe�cient of
�P which is made negative to enhance the numerical stability of the discretized equation (see
References [30; 24]).
The resulting integrated equation can be expressed symbolically in pseudo-linear form

AP�P=
∑
I
AI�I + bP

where the index I runs over the nodal points W;E;N; S (see Figure 3)∫
cell area

S� dx dy= �SC + �SP�P

bP = �SC + A0P ��
n
P

A0P =∧ 
V

t
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AI =Dif(|Pei|) + max(sign(i)Fi; 0)
AP =

∑
I
AI − �SP + A0P

where the index i refers to the control volume surfaces (i∈{w; e; s; n}); Di is the local di�usion
conductance; Fi is the mass �ux through the corresponding face normal to i direction of control
volume; Pei is the local Peclet number de�ned by Pei=Fi=Di; sign(i) is +1 for i∈{w; s} and
−1 for i∈{e; n}.
An overbar means that the applied values are evaluated using the known �elds from the

previous time (or iteration) level.
In our calculations, the hybrid scheme is used in the momentum equations:

f(|Pei|)= max
(
0; 1− |Pei|

2

)

while upwind scheme is used in the constitutive equations for the stresses:

f(|Pei|)=1
Consider the discretized form of the �xx equation (a=1):

AP�xxi; j = AW �xxi−1; j + AE�xxi+1; j + AS�xxi; j−1 + AN�xxi; j+1 + b1i; j

Fe =WeUi+1=2; j
yj; Fw = WeUi−1=2; j
yj

Fs =WeVi; j−1=2
xi; Fn = WeVi; j+1=2
xi

De =	
2
yj


xi +
xi+1
; Dw = 	

2
yj

xi−1 + 
xi

Ds =	
2
xi


yj−1 + 
yj
; Dn=	

2
xi

yj +
yj+1

AE =De +max(−Fe; 0); AW =Dw +max(Fw; 0)

AS =Ds +max(Fs; 0); AN =Dn +max(−Fn; 0)

AP = AW + AE + AS + AN +
xi
yj +We

xi
yj

t

+ �
We
!r
(�nxxi; j + �

n
yyi; j)
xi
yj

b1i; j =2We(Ui+1=2; j −Ui−1=2; j)
yj�nxxi; j + 2!r(Ui+1=2; j −Ui−1=2; j)
yj

+2We(dU dY )i; j�nxyi; j 
xi
yj +We

xi
yj

t

�nxxi; j

(dU dY )i; j is the discretization of @U=@y at the grid point P.
The discretized form of the �yy equation is

AP�yyi; j = AW �yyi−1; j + AE�yyi+1; j + AS�yyi; j−1 + AN�yyi; j+1 + b2i; j

Fe =WeUi+1=2; j
yj; Fw=WeUi−1=2; j
yj

Fs =WeVi; j−1=2 
xi; Fn=WeVi; j+1=2
xi

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:939–959



FINITE VOLUME APPROACH FOR UNSTEADY VISCOELASTIC FLOWS 947
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2
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2
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; Dn=	

2
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yj +
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t

�nyyi; j

(dV dX )i; j is the discretization of @V=@x at the grid point P.
And for �xy equation the discretized form is

AP�xyi−1=2; j−1=2 = AW �xyi−3=2; j−1=2 + AE�xyi+3=2; j−1=2 + AS �xyi−1=2; j−3=2 + AN �xyi−1=2; j+3=2
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where the unknown values Ui; j−1=2; Ui−1; j−1=2; Vi−1=2; j−1; Vi−1=2; j, �xxi−1=2; j−1=2 and �yyi−1=2; j−1=2 are
computed by linear interpolation of the four known neighbours.

4. SOLUTION METHOD

To obtain the kinematic �elds, the derivation of pressure equation to calculate the pres-
sure �eld is obviously needed. The semi-implicit method for the pressure linked equation
revised (SIMPLER) algorithm of Patankar [30] is used. Detailed procedures of the SIMPLER
algorithm have been well documented in the work of Xue et al. [27].
The non-linearity of the stress equations used for Oldroyd-B or Phan Thien–Tanner �uids

requires the use of iterative schemes to obtain numerical solutions. The approach adopted
in this work is to decouple the stress and momentum equations, and to solve each in turn
for the stress or velocity �eld, with the other kept �xed, until a converged state is reached.
Thus decoupled approaches reduce the full problem to repeatedly solving two much simpler
problems.
The discretized equations for each control volume in the �ow domain consist of set of

linear algebraic equations that can be solved easily by a generalization of the tridiagonal
matrix algorithm (TDMA) algorithm for two dimensions, in combination with a multigrid
method. To stabilize the calculations, a global under-relaxation with a factor of 0.7 is used
for the velocity component. The stresses are also under-relaxed by a global factor of 0.1.
Because of the implicit nature of the iterative Euler scheme, the time-step 
t is not con-

strained by the Courant stability limit encountered in explicit schemes. For the range of We
calculations in this paper, value of 
t=0:1 is found to be satisfactory to obtain a stable
and converged solution. The convergence criteria is evaluated by requiring that residuals of
the discretized equations over all control volumes for any dependent variable is less than the
input tolerance, of the order 10−6.
In this work, the prede�ned level of tolerance to which steady-state convergence is de-

manded is taken as ‖Sn+1 − Sn‖=‖Sn+1‖¡10−6 where Sn is the solution vector at time n
t,
and ‖:‖ is L2 measure.
We use continuation techniques to obtain convergent solutions at high Weissenberg number,

by increasing the Weissenberg number and the initial condition is taken as the previous We
solution.

5. MULTIGRID METHOD

To improve the convergence speed of the scheme, we introduce a multigrid method. An
e�cient multigrid algorithm for solving the resulting discrete equations is developed. Known
(Un; Pn; �n) at time n
t, we use a FAS multigrid algorithm (see References [31; 32; 23]) to
calculate (Un+1; Pn+1; �n+1) at time (n+ 1)
t.
Let (�t)16l6N be a set of N grids of domain �, �N is the �nest grid and �1 is the coarest

grid.
On each grid, we solve

Ll(Ul; Pl; �l)= bl (7)
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We denote by �N the required precision on grid �N , rl the residual on grid �l, Pl the
previous residual on grid �l and � the coe�cient of allowed divergence rate.
FAS algorithm

5.1. Resolution on one grid:decoupled formulation

In this section we see how to solve system (7) on each grid �l. This system is obtained by
discretizing problem (5) on grid �l.
On each grid �l we decompose system (7) as follows:

L1l (Ul; Pl; �l)= b
1
l (8)

L2l (Ul; Pl; �l)= b
2
l (9)
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(8) presents the discretization of the momentum and continuity equations, and boundary con-
ditions for U . The unknown variables are the velocity and pressure. The stress tensor is a
known data of problem (8).
(9) presents the discretization of the constitutive equation and the boundary conditions for

�. The unknown variable is the stress tensor and the velocity �eld is known.
We execute an ml iterations in the following method.
Step 1
At the �rst iteration �

l
is initialized on the grid �l, in the following iterations �l is given

by Step 2 of the previous iteration. We take this value of �
l
in (8) that we solve by executing

a number itvit equilibrium and continuity iterations.
Step 2
We take back the values of Ul obtained at Step 1 in (9) that we solve by executing a

number itcont stress tensor iterations.
The numerical experiences have shown that we must choose itvit larger than itcont to ensure

the stability of the method. In numerical tests we have taken itvit=5 or 10 and itcont=1.

6. NUMERICAL RESULTS

The numerical study in this paper is to compute the steady creeping �ow of an Oldroyd-B and
Phan Thien–Tanner �uids through four-to-one abrupt plane contraction. The �ow through a
four-to-one abrupt plane contraction is heavily cited in the literature, having been extensively
studied numerically [6; 12; 16; 25; 33–36]. This viscoelastic benchmark problem is very dif-
�cult to solve. One of the di�culties in treating such a �ow is the presence of the re-entrant
corner where the stresses become extremely high at higher elasticity resulting in numerical
instability and loss of convergence of the solution. Based on the previous numerical results
[36], symmetry considerations lead us to consider only half of the geometry. The schematic
�ow diagram of the computational domain and the boundary conditions are shown in Figure 5.
Fully developed parabolic velocity pro�le is prescribed at entry and exit sections. No-

slip conditions apply on the solid wall. A vanishing tangential traction and normal velocity
component together with a vanishing shear stress are imposed on the line of symmetry. Stress
components are also imposed at the inlet.
The upstream tube length is 10 and the downstream tube is 30, and are assumed to be

adequate for the prescription of fully developed velocity and stress pro�les at the inlet and
outlet boundaries.

Figure 5. Four-to-one abrupt plane contraction (Lm=10:0 and Lv=30:0).
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Figure 6. Partial view of the Mesh 2 for the �ow in a four-to-one plane contraction (grid �4).

Table II. The CPU reclaimed by four di�erent values of Weissenberg number with both single grid
algorithm and FAS algorithm.

CPU We=3 We=7 We=10 We=15

Single grid 1 h 50 mn 2 h 17 mn 7 h 12 mn 10 h 07 mn
FAS algorithm 35 mn 55 mn 1 h 35 mn 2 h 11 mn

One mesh is employed in the present investigation, the Mesh 2 used in Reference [21].
This mesh contains 2624 elements, 17 140 unknown variables and the smallest element at the
singularity has a size of 
x=0:05 and 
y=0:025. The mesh is depicted in Figure 6.
We have chosen a polymer viscosity !r of 0.89, �=0:2 for Phan Thien–Tanner model

and a=1 in order to compare our results with the many numerical simulations used to solve
this problem. The Reynolds number was set equal to 0.1 for all simulations. For the We
cases presented in this paper, the computational time required to obtain a converged solution
varies approximately from 100 to 200 min of CPU time on a personal computer (PC) with
a Pentium processor running at 550 MHz. The calculation is marched until a steady state is
reached with full convergence in each time-step.
We wish to examine the smoothness of the solution and the convergence of the method

when We increases. We have selected on purpose to show the solution pro�les on the most
di�cult portion of the �ow boundary, i.e. along the wall near the re-entrant corner and the
symmetry line in order to assess the quality of the solutions.

6.1. Oldroyd-B model

First of all we compare the e�ciency of the FAS multigrid algorithm with the single-grid
algorithm. In Table II we compare for di�erent values of Weisenberg number the time CPU
reclaimed by both FAS algorithm and single-grid algorithm. This table shows that if we use
the FAS algorithm, we can simulate the 4:1 contraction problem in a short time by using a
very thin mesh.
The �rst velocity component U and the second velocity component V pro�les along the

line y=1 are plotted for We=10 in Figure 7. This �gure shows an important velocity
overshoot. Figure 8 illustrates line plot of �rst normal stress di�erence at We=15:5 through the
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Figure 7. Horizontal and vertical velocity components for the Oldroyd-B
model at We=10:0 along the y=1 line.

Figure 8. First normal stress di�erence on y=1 (We=15:5).

re-entrant corner. A high peak is apparent. Figure 9 exhibits the distribution of �xx along y=1
for three di�erent values of We. Apparently �xx at the corner causes signi�cant behaviour. As
We increases, the values of �xx at the singular point go up rapidly. The smoothness of the
solution is examined by plotting the streamline contours for We=10 as shown in Figure 10.
Small recirculation cells may be observed, but no lip vortex. Contours of the �xx and �xy
shown in Figures 11 and 12, respectively, illustrate physically acceptable state solution for
We=17. It is clear that the re-entrant corner represents a strong singularity.
The steady-state solution of the Oldroyd-B model are similar to computed solutions in

References [6; 23; 36; 37]. The highest We that we could reach with convergent solutions
was 20.
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Figure 9. Pro�les of �xx on y=1: We=10 (-.-.-); We=15:5 (- - -); We=17(-).

Figure 10. Isolines of streamline function (We=10).

Figure 11. Isolines of �xx (We=17).
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Figure 12. Isolines of �xy (We=17).

Figure 13. First normal stress di�erence along the symmetry line (�=0:2; We=20).

6.2. Phan Thien–Tanner model

Figure 13 provides the distribution of the normal stress di�erence �xx−�yy along the centerline
for We=20. It starts from zero upstream in the reservoir, increases to reach a maximum just
before the contraction and decreases to become zero. At Weissenberg number of 50, Figure
14 shows the pro�le of �xx on a horizontal line through the re-entrant corner. We plot pro�les
of �yy and �xy along the axis y=1, respectively, in Figures 15 and 16. Small singularity
observed at the re-entrant corner for the stress tensor. The shape of the peak stress for the
Phan Thien–Tanner is similar to the one observed for the Oldroyd-B model but the intensity
of the peak di�ers. The computed streamlines are shown in Figures 17 and 18 for We=15
and 50, respectively. Recirculation zones are formed in the reservoir. Signi�cant changes in
vortex activity were observed with increase in We through 15 and 50. The smoothness of the
�nite volume solutions is further veri�ed by plotting the contours of extra-stress as shown in
Figures 19–21 for We=20.
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Figure 14. Pro�le of �xx on y=1 (�=0:2; We=50).

Figure 15. Pro�le of �yy on y=1 (�=0:2, We=50).

For the Phan Thien–Tanner, calculations are possible up to very high values of We without
encountering any loss of convergence for the mesh used.

7. CONCLUSION

A decoupled, implicit �nite volume algorithm for solving unsteady viscoelastic �ows has been
described and implemented for two-dimensional problems. The conservative and constitutive
equations are solved using the FVM method on a staggered grid with a hybrid scheme for the
velocities and �rst-order upwind approximation for the viscoelastic stresses. The iterative SIM-
PLER algorithm is employed to relax the coupled momentum and continuity equations. The
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Figure 16. Pro�le of �xy on y=1 (�=0:2; We=50).

Figure 17. Isolines of streamline function (�=0:2; We=15).

Figure 18. Isolines of streamline function (�=0:2; We=50).
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Figure 19. Isolines of �xx (�=0:2; We=20).

Figure 20. Isolines of �yy (�=0:2; We=20).

Figure 21. Isolines of �xy (�=0:2; We=20).

discretized equations are solved sequentially, using the TDMA solver with under-relaxation.
In both, the FAS multigrid algorithm is used to speed up the convergence rate.
In this study the �ows of an Oldroyd-B and Phan Thien–Tanner �uids have been computed

in abrupt plane four-to-one contraction. Numerical simulations have been carried out for a wide
range of We with good convergence of the iterative scheme. For the Oldroyd-B model, we
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could obtain solutions for We as high as 20 and the highest We for Phan Thien–Tanner model
with �=0:02 was 100. No critical Weissenberg number was found when the Phan Thien–
Tanner is used with �=0:2. The numerical results are satisfactory with regard to computed
solutions in the literature. Our simulations have shown that large vortices may be observed
when the Weissenberg is high enough. In this paper it was shown that our approach is very
e�cient and suitable for describing singularity e�ects. The general features of the method are
now to be extended to three-dimensional problems and applied to White–Metzner model.
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